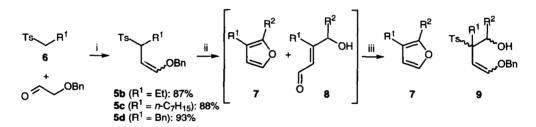

1-Benzyloxy-3-(*p*-tolylsulfonyl)alkenes as Enal β-Anion Equivalents. Synthesis of 2,3-Disubstituted Furans

Donald Craig* and Christopher J. Etheridge

Department of Chemistry, Imperial College of Science, Technology and Medicine, London SW7 2AY, U.K.


Abstract: An efficient three-step method is described for the synthesis of 2,3-disubstituted furans from (p-toly|sulfony|) alkanes 6 and 2-benzyloxyethanal.

We recently described¹ an efficient procedure for the synthesis of 4-substituted butenolides 4 from 1benzyloxy-3-(p-tolylsulfonyl)propene 1 and aldehydes. The method involves reaction with aldehydes of the lithio-anion of 1, hydrolysis-cyclization of the adducts 2, and oxidation of the product lactols 3 followed by base-mediated elimination of the elements of *p*-tolylsulfinic acid from the resulting butanolides (Scheme 1).

It occurred to us that the more highly substituted adducts resulting from reaction of the anions derived from 3-substituted analogues 5 with aldehydes would be substantially more protiolytically labile than 2 on account of the greater degree of substitution at C-3. Acid-catalyzed elimination of the elements of water and *p*-tolylsulfinic acid under anhydrous conditions would then give 2,3-disubstituted furans. Such furans are found in a variety of natural products including a wide range of pharmaceutically active compounds, and are useful intermediates in organic synthesis. Whilst methods may be found in the literature for the synthesis of these materials,² generally they have disadvantages such as the need for complex starting materials, harsh reaction conditions and low yields. This new methodology helps to overcome these problems.

Initially, sulfones 5 were prepared via alkylation of the parent compound 1. Treatment of a cold $(-78^{\circ}C)$ THF solution of 1 with *n*-BuLi followed by addition of 3-bromo-1-propene gave **5a** in 96% yield.³ Since 1 was derived ultimately from (*p*-tolylsulfonyl)methane,¹ we reasoned that 5 would be accessible from 1-(*p*-tolylsulfonyl)alkanes 6 using a similar sequence of transformations. We have found that **5b-d** may be prepared in one pot via treatment of 6^4 with two equivalents of base followed by phosphorylation, Wadsworth-Emmons reaction of the resulting phosphorus-stabilized carbanions with 2-benzyloxyethanal, and in situ potassium *tert*-butoxide-mediated isomerization^{1,5} of the vinylic sulfones so formed. Reaction of lithiated 5 with aldehydes followed by low-temperature stoichiometric proton quench presumably gave the adducts 9; these were unstable to isolation and eliminated *p*-TolSO₂H on work-up to give a 1:1 mixture of the required 2,3-disubstituted furans 7 and *E*- γ -hydroxyenals 8. Immediate⁶ treatment of these crude mixtures with silica gel in dichloromethane followed by chromatography gave furans 7 in excellent overall yields (Table). The method does not work well for furans having either α -branched or unsaturated substituents at the 3-position; in these cases (R¹=*i*-Pr, CH=CH₂, Ph) the reactivity of the lithio-anion of 6 and of the intermediate phosphonate is attenuated

Reagents and conditions: (i) LDA (2.2 eq), THF, -78°C; (EtO)₂P(O)Cl, -78°C; BnOCH₂CHO, THF, -78°C \rightarrow 20°C, 15 h; *t*-BuOK (2.2 eq), THF; AcOH (2.4 eq), THF; (ii) *n*-BuLi (1.1 eq), THF, -78°C; R²CHO, THF, -78°C; AcOH (1.1 eq), THF, -78°C; aq NaHCO₃, -78°C \rightarrow 20°C; (iii) SiO₂, CH₂Cl₂, 20°C.

Sulfone 5	5a	5a	5a	5a	5b	5b	5c	5c	5c	5d	5d
R ¹	C ₃ H ₅	C_3H_5	C ₃ H ₅	С ₃ H ₅ <i>с</i> -С ₆ H ₁₁ (С	Et	Et	<i>n</i> -C ₇ H ₁₅	n-C7H15	; <i>n</i> -C ₇ H ₁₅	Bn	Bn
R ²	<i>п</i> -С ₆ Н ₁₃	(CH ₂₎₅ OP ⁷	Ph	<i>c</i> -C ₆ H ₁₁ (C	H₂)5OP ⁷	Ph	<i>n</i> -C ₆ H ₁₃	Ph	c-C ₆ H₁1	<i>n</i> -C ₆ H ₁₃	<i>с</i> -С ₆ Н₁1
Yield of 7 (%) ⁸	95	97	96	91	97	95	98	85	86	95	93

to such an extent that the phosphorylation and Wadsworth-Emmons reactions are prohibitively sluggish. We are currently investigating related aldol-type methodology in order to overcome these problems.

Acknowledgements

We thank the SERC (Quota studentship to C. J. E.) and Zeneca Limited for financial support of this research.

References and notes

- 1. Craig, D.; Etheridge, C. J.; Smith, A. M. Tetrahedron Lett. 1992, 33, 7445.
- For examples, see: Pelletier, S. W.; Djarmati, Z; Lajsic, S. D.; Micovic, I. V.; Yang, D. T. C. Tetrahedron 1975, 31, 1659; Kotake, H.; Inomata, K.; Kinoshita, H.; Aoyama, S.; Sakamoto, Y. Heterocycles 1978, 10, 105; McCombie, S. W.; Shanhar, B. B.; Ganguly, A. K. Tetrahedron Lett. 1987, 28, 4123; Kim, S.; Kim, Y. G. Synlett 1991, 869; Ji, J.; Lu, X. J. Chem. Soc., Chem. Commun. 1993, 764; Marshall, J. A.; Dubay, W. J. J. Org. Chem. 1993, 58, 3435 and references cited therein.
- 3. Iodomethane and 1-iodoheptane also participate effectively in these alkylation reactions: Smith, A. M. Ph.D. thesis, University of London, 1991.
- 4. 1-(p-Tolylsulfonyl)alkanes 6 were prepared by reaction (DMSO, 20°C) of anhydrous sodium ptolylsulfinate with the appropriate 1-iodoalkane, or with the corresponding bromoalkane in the presence of a catalytic amount of lithium iodide.
- 5. Craig, D.; Smith, A. M. Tetrahedron Lett. 1992, 33, 695.
- 6. Crude reaction mixtures containing 7 and 8 were unstable, rapidly decomposing to give unidentified, highly coloured and apparently polymeric compounds on standing in air.
- 7. P = tert-butyldiphenylsilyl.
- All yields cited herein are for pure materials isolated by flash chromatography on silica gel. All new compounds gave ¹H nmr, ir and ms data, and elemental combustion analyses in accord with the proposed structures.

(Received in UK 8 September 1993; accepted 17 September 1993)